(a) By the given condition
an+1+bn+2an+bn=a+b2
or 2an+1+2bn+1=an+1+bn+1+aba+ban
or an+1−anb=bna−bn+1
or aa(a−b)=ba(a−b)
∴an=bn. Above is possible only when n=0
∵a0=b0=1
(b) an+1+b6n+1an+bn=√ab=a1/2b1/2
∴an+1+bn+1=ana1/2b1/2+bnb1/2a1/2
an+1/2√b+bn+1/2√a
∴an+1/2(√a−√b)=bn+1/2(√a−√b)
∴an+1/2=bn+1/2
Above is possible only when n+12=0
∴=−12
(c) an+1+bn+2an+bn= H.M. of a and b =2aba+b
∴a.an+1+abn+1+ban+1+b.bn+1
=2an+1b+2bn+1a
∴a.an+1+b.bn+1=an+1b+bn+1a
or an+1(a−b)=bn+1(a−b)
or an+1=bn+1
or (ab)n+1=1∴n+1=0 or n=−1