The correct option is C y(2)=log2(1+e3)
Given : dydx=2x+y−2x2y,y(0)=1,
⇒dydx=2x(2y−12y)
⇒(2y2y−1)dy=2xdx
Integrating both sides, we get
∫(2y2y−1)dy=∫2xdx
Let 2y−1=t⇒2yln2dy=dt
⇒∫dtt(1ln2)=∫2xdx
⇒lntln2=2xln2+C
∴ln(2y−1)=2x+c
When x=0,y=1⇒c=−1
⇒2y=1+(e2x−1)
When x=1,2y=1+e
∴y(1)=log2(1+e)
When x=2,2y=1+e3
∴y(2)=log2(1+e3)