The correct option is A eπ
dydx−y=y2(sinx+cosx)
⇒1y2dydx−1y=sinx+cosx
Let −1y=t⇒1y2dydx=dtdx
Now, dtdx+t=sinx+cosx
I.F. =ex
∴t⋅ex=∫ex(sinx+cosx) dx
⇒−1yex=exsinx+C
Given, if x=0, then y=1
⇒C=−1
Hence, equation of the curve is
−exy=exsinx−1
If x=π,
then −eπy=−1
⇒y=eπ