If sinxsiny=12,cosxcosy=32, where x,y∈(0,π2), then the value of tan(x+y) is equal to:
As sinxsiny=12 and cosxcosy=32, then,
tanxtany=sinxcosxsinycosy
=sinxsiny×cosycosx
=12×23
=13
tany=3tanx
tan(x+y)=tanx+tany1−tanxtany
tan(x+y)=tanx+3tanx1−tanx×3tanx
tan(x+y)=4tanx1−3tan2x (1)
Since, sinxsiny=12 and cosxcosy=32, then,
siny=2sinx and cosy=23cosx
sin2y=4sin2x and cos2y=49cos2x
Applying the trigonometric identity,
sin2y+cos2y=1
4sin2x+49cos2x=1
4cos2x(sin2xcos2x+19)=1
9tan2x+19=14cos2x
9tan2x+19=sec2x4
9tan2x+19=1+tan2x4
36tan2x+4=9+9tan2x
27tan2x−5=0
tan2x=527
tanx=√53√3
Put the value of tanx in equation (1),
tan(x+y)=4(√53√3)1−3(√53√3)2
=4√53√31−3(527)
=3√5√3
=√15