If (1+x+x2)n=a0+a1x+a2x2+a3x3+...+a2nx2n and A=a0+a3+a6+...+a3k+...B=a1+a4+a7+...+a3k+1+...C=a2+a5+a8+...+a3k+2+...⎫⎪⎬⎪⎭∀k=0,1,...n then which of following is/are true?
A
A+B+C=3n
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
A=B=C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
A=B=C=3n−1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
A=B=C=3n−2
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct options are AA+B+C=3n BA=B=C CA=B=C=3n−1 (1+x+x2)n=a0+a1x+a1x2+...+a2nx2n ∴(1+x+x2)n=(a0+a3x3+a0x6+...) +x(a1+a4x3+...)+x2(a2+a3x3+a8x6+...)...(i) Putting x=1,ω,ω2 3n=(a0+a3+a6+...)+(a1+a4+a7+...)+(a2+a5+a5+...) 3n=A+B+C Again 0=A+Bω+Cω2...(∗∗) 0=A+Bω+Cω...(∗∗∗) By adding (*), (**)and (***) we get A=3n−1=B=C