If f2(x)⋅f(1−x1+x)=x3,[x≠−1,1 and f(x)≠0], then find |[f(−2)]| (where [] is the greatest integer function).
Open in App
Solution
f2(x).f(1−x1+x)=x3 ...(i) Replacing x by 1−x1+x, we get f2(1−x1+x)f(x)=(1−x1+x)3 ....(ii) By using Eqs.(i) and (ii), we get f3(x)=x6(1−x1+x)3 ⇒f(x)=x3(1−x1+x) f(−2)=83 ⇒[f(−2)]=2⇒[[f(−2)]]=2