If 1x3−2x2−x+2=Ax−1+Bx+1+Cx−2, then find the value of A+B+C.
Open in App
Solution
1x3−2x2−x+2=A(x−1)+B(x+1)+X(x−2). ⇒A(x+1)(x−2)+B(x−1)(x−2)+C(x−1)(x+1)(x−1)(x+1)(x−2) Let x−1=0 x=1 then 1=A(1+1)(1−2) 1=A(−2) A=−12 Again x+1=0 x=−1 We get 1=B(−1−1)(−1−2) 1=B(−2)(−3) 1=6B B=16 again x−2=0 x=2 1=C(2−1)(2+1) 1=C×1×3 1=3C C=13. Find the value of A+B+C