The correct option is C (2−√3)π
Using ∫baf(x)dx=∫baf(a+b−x)dx,
I=∫2π/3π/3x1+sinxdx
We can write
I=∫2π/3π/3π−x1+sinxdx
Adding we get
I=∫2π/3π/3π.dx1+sinx
Substitute tan(x/2)=t so that,
2I=∫√31/√32π⋅dt(1+t2)1+2t(1+t2)
⇒I=∫√31/√3π.dt(1+t)2=−π1+t]√31/√3
=π[−11+√3+√3√3+1]=(√3−1√3+1)(√3−1√3−1)π
=(2−√3)π