The correct options are
A a=−12
C c=−14
D d∈R
∫x2e−2xdx=e−2x(ax2+bx+c)+d
Differentiating both sides, we get
x2e−2x=e−2x(2ax+b)+(ax2+bx+c)(−2e−2x)
x2e−2x=e−2x(−2ax2+2(a−b)x+b−2c)
On comparing the coefficients, we get
−2a=1,2(a−b)=0,b−2c=0
a=−12,b=−12,c=−14
Also, d∈R