If dx+dy=(x+y)(dx-dy), then log(x+y) is equal to
x+y+C
x+2y+C
x–y+C
2x+y+C
Finding the value :It is given that
dx+dy=(x+y)(dx-dy)
Hence,
-(x+y-1)dx=-(x+y+1)dydydx=x+y-1x+y+1Substitutingx+y=v1+dydx=dvdxdvdx-1=v-1v+1dvdx=2vv+12vv+1dx=dvv+12vdv=dxIntegratingbothside,∫v+12vdv=∫dx12v+logv=x+cx+y+log(x+y)=2x+clog(x+y)=x-y+c
Hence, the correct answer is option C