We have,
exy2+ycosx2=5⋯(1)
Differentiating both sides w.r.t. x, we get
exy2(y2+2xydydx)+dydxcosx2−ysinx2×2x=0
⇒dydx(2xy⋅exy2+cosx2)=2xysinx2−y2⋅exy2
⇒dydx=2xysinx2−y2⋅exy22xy⋅exy2+cosx2
Putting x=0 in equation (1), we get
e0+ycos(0)=5
⇒y=4
⇒y′(0)=0−161=−16
∴|y′(0)|=16