If f(a)=2,f'(a)=1,g(a)=3,g'(a)=-1then limx→a[f(a)g(x)-f(x)g(a)](x-a)=
6
1
-1
-5
Explanation for the correct option:
Step 1. Find the value of limx→a[f(a)g(x)-f(x)g(a)](x-a)
Given data: f(a)=2,f'(a)=1,g(a)=3,g'(a)=-1
⇒limx→a[f(a)g(x)-f(x)g(a)](x-a)=f(a)g(a)-f(a)g(a)a-a=00
Step 2: Apply L' hospital rule:
∴limx→af(a)g(x)−f(x)g(a)x−a=limx→af(a)g'(x)−f'(x)g(a)1−0 ∵limx→cf(x)g(x)=limx→cf'(x)g'(x)
=limx→af(a)g′(a)−f′(a)g(a)
=2(-1)-(1)(3)=-5
Hence, option (D) is correct option.