If f, g, h are real functions given by f(x)=x2, g(x)=tan x and h(x)=logex, then write the value of hogof(√π4)
We have, f(x)=x2, g(x)=tan x and h(x)=logex Now, (hogof)(√π4)=h[g(f)](√π4)=h[g(√π4)]=h[tan π4]=h(1)=loee1=0