Step 1: Forming a G.P.
Given, f(x+y)=f(x)f(y) x,y∈N,
f(1)=3 and ∑nx=1f(x)=120
f(1+1)=f(1)f(1)
⇒f(2)=3×3
⇒f(2)=32
f(3)=f(2+1)
⇒f(3)=f(2)f(1)
⇒f(3)=32×3
⇒ f(3)=33
f(4)=f(2+2)
⇒f(4)=f(2)f(2)
⇒ f(4)=32×32
⇒ f(4)=34
f(2)=32,f(3)=33,f(4)=34
Similarly,
f(5)=35
f(6)=36
Now series is,
3,32,33,34,35,36, ......
It’s a G.P. whose first term is a=3 and common ratio
r=323=3
Step 2. Finding the value of n.
Sum of n terms of G.P. is,
∵Sn=a[rn−1]r−1
Given Σnx=1f(x)=Sn=120 & a=3,r=3
Putting values,
120=3[3n−1]3−1
⇒ 120×2=3[3n−1]
⇒ 240=3n+1−3
⇒ 240+3=3n+1
⇒243=3n+1
⇒ 35=3n+1
Comparing of powers,
⇒n+1=5
⇒n=5−1
⇒n=4
Final answer: Hence, n=4