If f is a function such that f(0)=2,f(1)=3 and f(x+2)=2f(x)–f(x+1) for every real x, then f(5)–10= ___
∵x=0⇒f(2)=2f(0)−f(1)=2×2−3=1 x=1⇒f(3)=2f(1)−f(2)=2×3−1=5 x=2⇒f(4)=2f(2)−f(3)=2×1−5=−3 x=3⇒f(5)=2f(3)−f(4)=2×5−(−3)=13