wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f is even or odd function then

Open in App
Solution

Using Properties
2ag(x)dx=2a0g(x)dx ...(1)
And bag(x)dx=bag(a+bx)dx ...(2)
A) Using (1) aa(f(x))2dx=2a0(f(x))2dx
B) Let I=aax(f(x)2dx ...(3)
From (2) I=aax(f(x)2dx (4)
From (3) and (4) we get 2I=0I=0
C) Let J=aa(x2+x3)(f(x))2dx ...(5)
From (2) J=aa(x2x3)(f(x))2dx ...(6)
From (5) and (6)
2J=aax2(f(x))2dx
Now using (1) 2J=2a0x2(f(x))2dxJ=a0x2(f(x))2dx
D) Let K=aa(f(x))4dx=2a0(f(x))4dx from (1)
And from (2) K=2a0(f(ax))4dx
Therefore
2K=2a0(f(x))4dx+2a0(f(ax))4dxK=a0(f(x))4dx+a0(f(ax))4dx

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Arithmetic Progression - Sum of n Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon