If f(2x2+y28,2x2−y28)=xy then
let2x2+(y28)=u2x2−(y28)=vthenu+v=4x2∴x=√(u+v4)u−v=2×(y28)=(y24)∴y=2√u−v∴f(u,v)=√(u+v4)×2√u−v=√u2−v2f(x,y)=√x2−y2
If f(x+2y, x-2y)=xy, then f(x, y) equals
Let f(x,y)=√x2+y2+√x2+y2−2x+1+√x2+y2−2y+1+√x2+y2−6x−8y+25∀x,yϵR, then