wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=a+bx+cx2, where c>0 and b24ac<0 then the area enclosed by the co-ordinate axes, the line x=2 and the curve y=f(x) is given by 13{f(0)+λf(1)+f(2)}.sq.unit,then λ is

Open in App
Solution

Area of OABLO=20y.dx
=20(a+bx+cx2)dx
=[ax+bx22+cx33]20
=(2a+2b+83c)
=13[6a+6b+8c] ..............(1)
But f(x)=a+bx+cx2
f(0)=a,20y.dx
f(0)=a,f(1)=a+b+c,f(2)=a+2b+4c
f(0)=a,f(1)=f(0)+b+c,f(2)=f(0)+2b+4c
f(0)=a,f(1)f(0)=b+c,f(2)f(0)=2b+4c
f(0)=a,f(1)f(0)=b+c,f(2)f(0)2=b+2c
f(0)=a,b+2cbc=f(2)f(0)2f(1)+f(0)=f(2)2f(1)+f(0)2
f(0)=a,c=f(2)2f(1)+f(0)2,b=f(1)f(0)c
f(0)=a,c=f(2)2f(1)+f(0)2,b=f(1)f(0)f(2)2f(1)+f(0)2=f(2)+f(0)2f(1)2 (on simplification)
a=f(0),b=4f(1)f(2)3f(0)2 and c=f(2)+f(0)2f(1)2
Then, from eqn(1) we get
13[6a+6b+8c]=13[6(f(0))+6(4f(1)f(2)3f(0)2)+8(f(2)+f(0)2f(1)2)]
On simplification,we get
=13[f(0)+4f(1)+f(2)]
On comparing the above with 13{f(0)+λf(1)+f(2)}.sq.unit we get λ=4
Hence, λ=4
954413_1043283_ans_ccb028618cc54503922fed2c85d1d7be.png

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Area under the Curve
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon