If f(x)=a+bx+cx2, where c>0 and b2−4ac<0 then the area enclosed by the co-ordinate axes, the line x=2 and the curve y=f(x) is given by 13{f(0)+λf(1)+f(2)}.sq.unit,then λ is
Open in App
Solution
Area of OABLO=∫20y.dx =∫20(a+bx+cx2)dx =[ax+bx22+cx33]20 =(2a+2b+83c) =13[6a+6b+8c] ..............(1) But f(x)=a+bx+cx2 f(0)=a,∫20y.dx ⇒f(0)=a,f(1)=a+b+c,f(2)=a+2b+4c ⇒f(0)=a,f(1)=f(0)+b+c,f(2)=f(0)+2b+4c ⇒f(0)=a,f(1)−f(0)=b+c,f(2)−f(0)=2b+4c ⇒f(0)=a,f(1)−f(0)=b+c,f(2)−f(0)2=b+2c ⇒f(0)=a,b+2c−b−c=f(2)−f(0)2−f(1)+f(0)=f(2)−2f(1)+f(0)2 ⇒f(0)=a,c=f(2)−2f(1)+f(0)2,b=f(1)−f(0)−c ⇒f(0)=a,c=f(2)−2f(1)+f(0)2,b=f(1)−f(0)−f(2)−2f(1)+f(0)2=f(2)+f(0)−2f(1)2 (on simplification) ∴a=f(0),b=4f(1)−f(2)−3f(0)2 and c=f(2)+f(0)−2f(1)2 Then, from eqn(1) we get 13[6a+6b+8c]=13[6(f(0))+6(4f(1)−f(2)−3f(0)2)+8(f(2)+f(0)−2f(1)2)] On simplification,we get =13[f(0)+4f(1)+f(2)] On comparing the above with 13{f(0)+λf(1)+f(2)}.sq.unit we get λ=4 Hence, λ=4