f(f(x))=f(x)2−3f(x)+2
=(x2−3x+2)2−3(x2−3x+2)+2
Using formula (a−b+c)2=a2+b2+c2−2ab+2ac−2bc
=(x2)2+(−3x)2+22−2x2(3x)+2x2(2)
−2(3x)(2)−3(x2−3x+2)+2
=x4+9x2+4−6x3−12x+4x2−3x2+9x−6+
=x4−6x3+9x2+4x2−3x2−12x+9x−6+2+4
=x4−6x3+10x2−3x
If f:R→R is defined by f(x)=x2−3x+2, write f{f(x)}.
If f:R->R is defined as f(x)=x2-3x+2 .
Find f(f(x))