If f(n)=1n{(2n+1)(2n+2)⋯(2n+n)}1/n, then limn→∞f(n) equals
Let A=1n{(2n+1)(2n+2)……−(2n+n)}1/n
logA=1nlimn→∞log[(2n+1)n(2n+2)n(2n+3)n…………..(2n+n)n]
logA=1nlimn→∞log[(2+1n)(2+2n)(2+3n)…………………(2+nn)]
logA=∫10log(2+x)dx
logA=|xlog(2+x)−x+2log(2+x)|10
logA=[log3−1+2log3−2log2]
logA=[log3−loge+log9−log4]
logA=[log(27/4e)]
A=(274e)