If f:R→R be given by f(x)=4x4x+2 for all xϵR. Then,
f(x)=f(1−x)
f(x)+f(1−x)=0
f(x)+f(1−x)=1
f(x)+f(x−1)=1
f(x)=4x4x+2;xϵRf(1−x)=41−x41−x+2=42×4x+4=24x+2f(x)+f(1−x)=4x4x+2+24x+2=4x+24x+2=1