wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=(1+x)(1+x2)(1+x4)(1+x8), then the value of f(1) is

Open in App
Solution

Given, f(x)=(1+x)(1+x2)(1+x4)(1+x8)
Taking loge on both sides,
lnf(x)=ln(1+x)+ln(1+x2)+ln(1+x4)+ln(1+x8)
Differentiating w.r.t. x, we get
1f(x)f(x)=11+x+2x1+x2+4x31+x4+8x71+x8
f(x)=f(x)[11+x+2x1+x2+4x31+x4+8x71+x8]
Hence, f(1)=f(1)[12+22+42+82]
=(2)4×152=120

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
Join BYJU'S Learning Program
CrossIcon