Given, f(x)=(1+x)(1+x2)(1+x4)(1+x8)
Taking loge on both sides,
⇒lnf(x)=ln(1+x)+ln(1+x2)+ln(1+x4)+ln(1+x8)
Differentiating w.r.t. x, we get
1f(x)⋅f′(x)=11+x+2x1+x2+4x31+x4+8x71+x8
⇒f′(x)=f(x)[11+x+2x1+x2+4x31+x4+8x71+x8]
Hence, f′(1)=f(1)[12+22+42+82]
=(2)4×152=120