The correct option is B 100
f(x)=1+x+x22+...+x100100
Differentiating both sides with respect to x, we get
f′(x)=ddx(1+x+x22+...+x100100)
=ddx(1)+ddx(x)+ddx(x22)+...+ddx(x100100)
=ddx(1)+ddx(x)+12ddx(x2)+...+1100ddx(x100)
=0+1+12×2x+...+1100×100x99
=1+x+x2+...+x99
Putting x=1, we get
f′(1)=1+1+1+...+1 (100 terms)
=100
Hence, the correct answer is option (b).