The correct option is D 50
f(x)=1−x+x2−x3+...−x99+x100,
Differentiating both sides with respect to x, we get
f′(x)==ddx(1−x+x2−x3+...−x99+x100
=ddx(1)−ddx(x)+ddx(x2)−ddx(x3)+...−ddx(x99)+ddx(x100)
=0−1+2x−3x2+...−99x98+100x99
=−1+2x−3x2+...−99x98+100x99
Putting x=1, we get
f′(1)=−1+2−3+...−99+100
=(−1+2)+(−3+4)+(−5+6)+...+(−99+100)
=1+1+1+...+1 (50 terms)
=50
Hence, the correct answer is option (d).