If f(x+2y,x−2y)=xy, then f(x,y) equals
x2−y28
x2−y22
x2+y24
x2−y24
Given: f(x+2y,x−2y)=xy, Let x+2y=p & x–2y=q Solving both of these equation, we get x=p+q2 & y=p−q2∴f(p,q)=p2−q28⇒f(x,y)=x2−y28
If f(x+2y, x-2y)=xy, then f(x, y) equals