If f(x)=a loge |x|+bx2+x has extremum at x = 1 and x = 3, then
a = -3/4, b= -1/8
a=3/4, b= -1/8
a =-3/4, b=1/8
a=3,b=-4
For x>0 or x<0f′(x)=ax+2bx+1∵f′(1)=0⇒a+2b+1=0and f′(3)=0⇒a3+6b+1=0 Solving Eqs. (i) and (ii), we get a = - 3/4, b = -1/8