wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, fπ2 = 5, find f(x)

Open in App
Solution

f'x=a sinx+b cos xf'0=4, f0=3fπ2=5f'x=a sin x+b cos xf'xdx=a sin x+b cos xdxfx=-a cos x+b sin x +C ...(i)Now puting x=0 in equation (i)f0=-a cos 0+b sin 0 +C3=-a×1+b×0 + C3=-a+C ... iiNow puting x=π2 in equation (i)fπ2=-a cos π2+b sin π2 +C5=-a cosπ2+b sin π2+C5=-a×0+b×1+C5=b+C ... iiiWe also have f'0=4f'x=a sin x+b cos xf'0=a sin 0+b cos 04=a×0+b×14=b ... ivsolving ii, iii and iv we get,b=4C=1a =-2 fx=2cos x+4 sin x +1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Monotonicity
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon