If f(x)=ax+bcx+d, then fof(x)=x provided that:
d=-a
d=a
a=b=c=d=1
a=b=1
Explanation for the correct option.
Find the relation:
f(x)=ax+bcx+d⇒ffx=afx+bcfx+d=aax+bcx+d+bcax+bcx+d+d=a2x+ab+bcx+bdacx+bc+cdx+d2
It is given that fof(x)=x.
⇒a2x+ab+bcx+bdacx+bc+cdx+d2=x⇒a2x+ab+bcx+bd=acx2+bcx+cdx2+d2x⇒ac+cdx2+d2+bc-a2-bcx-ab+bd=0
∀x∈R, so
ac+cdx2=0,d2+bc-a2-bcx=0,-ab+bd=0⇒a+dc=0,d+ad-a=0,-a+db=0⇒d=-a
Hence, option A is correct.