f(x−1)+f(x+1)=√3f(x)
⇒f(x)+f(x+2)=√3f(x+1)
Putting, x=x+2,
f(x+1)+f(x+3)=√3f(x+2)
f(x−1)+2f(x+2)+f(x+3)=√3[√3f(x+1)]
f(x−1)+f(x+3)=f(x+1)
Putting, x=x+2, again
f(x+1)+f(x+5)=f(x+3)
f(x−1)+f(x+5)=0
f(x+5)=−f(x−1)
f(x)=−f(x+6)
f(x+12)=f(x)
∑19r−0f(5+12r)=20f(5)=20×10=200
Hence, sum of digits =2+0+0=2