The correct option is
B Continuous everywhere and not differentiable at 3 point
f(x)=⎧⎪
⎪
⎪⎨⎪
⎪
⎪⎩2x2+12x+16;−4≤x≤−22+x;−2<x≤02−x;0<x≤14x−x2−2;1<x≤3
at x=−2
limx→2−f(x)=limx→2−(2x2+12x+16)
=2(−2)2+12(−2)+16
=0
limx+−2+f(x)=limx+−2+(2+x)=2−2=0
LHL=RHL ⇒continuous
at x=0
limx→0−f(x)=limx→0−(2−x)=2
limx→0+f(x)=limx→0−(2−x)=2
At x=1 LHL=RHL ⇒continuous
limx→1−f(x)=limx→1−(2−x)=2−1=1
limx→1+f(x)=limx→1+(4x−x2−2)=4−1−2=1
LHL=RHL ⇒continuous
f′(x)=⎧⎪
⎪⎨⎪
⎪⎩4x+12;−4≤x≤−21;−2<x≤0−1;0<x≤14−2x;1<x≤3
at x=−2
limx→−2−f′(x)=limx→−2−(4x+12)=4
limx+−2+f′(x)=limx+−2+(1)=1
LHL≠RHL ⇒non differentiable
at x=0
limx→0−f′(x)=1
limx→0+f′(x)=−1
LHL≠RHL → differentiable
at x=1
limx→1−f′(x)=limx→1−(−1)=−1
limx→1+f′(x)=limx→1+(4−2x)=4−2=2
LHL≠RHL ⇒not differentiable