The correct option is C 2
f(x)=⎧⎪⎨⎪⎩ax2−b,|x|<1−1|x|,|x|≥1⇒f(x)=⎧⎪⎨⎪⎩ax2−b,|x|<1−1|x|,x≥1 or x≤−1⇒f(x)=⎧⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪⎩ax2−b,−1<x<11x,x≤−1−1x,x≥1f′(x)=⎧⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪⎩2ax,−1<x<1−1x2,x≤−11x2,x≥1
f(x) is continuous at x=1.
So, f(1−)=f(1+)
⇒a−b=−1 …(1)
Given, f(x) is differentiable at x=1
So, f′(1−)=f′(1+)
⇒2a(1)=112⇒a=12
From equation (1),
b=12+1=32
∴a+b=12+32=2