If f(x)=∣∣
∣∣0x−ax−bx+a0x−cx+bx+c0∣∣
∣∣,
which of the following is true?
(a) f(a) = 0
(b) f(b) = 0
(c) f(0) = 0
(d) f(1) = 0
(c) We have,
f(x)=∣∣
∣∣0x−ax−bx+a0x−cx+bx+c0∣∣
∣∣⇒f(a)=∣∣
∣∣00a−b2a0a−ca+ba+c0∣∣
∣∣=[(a−b){2a.(a+c)}]≠0∴f(b)=∣∣
∣∣0b−a0b+a0b−c2bb+c0∣∣
∣∣=−(b−a)[2b(b−c)]=−2b(b−a)(b−c)≠0∴f(0)=∣∣
∣∣0−a−ba0−cbc0∣∣
∣∣=a(bc)−b(ac)=abc−abc=0