The correct options are
A x
B a
C 2a+3x
f(2x)=⎡⎢⎣a−102axa−14ax22axa⎤⎥⎦Applying,R3−2xR2,⎡⎢⎣a−102axa−100a+2x⎤⎥⎦=(a+2x)(a2+2ax)
f(x)=⎡⎢⎣a−10axa−1ax2axa⎤⎥⎦Applying,R3−xR2,⎡⎢⎣a−10axa−100a+x⎤⎥⎦=(a+x)(a2+ax)
Now,
f(2x)−f(x)
=(a+2x)(a2+2ax)−(a+x)(a2+ax)
=a3+2a2x+2xa2+4ax2−a3−a2x−a2x−ax2
=3ax2+2a2x=ax(3x+2a)
So, it is divisible by a, x and (3x+2a)