If f(x)=∣∣ ∣∣cosx1012cosx1012cosx∣∣ ∣∣, then ∫π/20f(x)dx is
f(x)=∣∣ ∣∣cosx1012cosx1012cosx∣∣ ∣∣
=cosx(4cos2x–1)–1(2cosx)
=4cos3x–3cosx
=cos3x
∫π20cos3x⋅dx=[sin3x3]π20
=sin3(π2)3−sin3(0)3
=−13.