Consider the given function.
f(x)=e2x−1ax, for x<0,a≠0
f(x)=1, for x=0
f(x)=log(1+7x)bx, for x>0,b≠0
Since, the function is continuous at x=0
So, R.H.L=L.H.L=f(0)
Therefore,
limx→0−f(x)=limx→0−e2x−1ax
limx→0−[2a×e2x−12x]=1
2a×1=1
a=2
Similarly,
limx→0+f(x)=limx→0+log(1+7x)bx
limx→0+7blog(1+7x)7x=1
7b=1
b=7
Hence, this is the answer.