If f(x)=cos^2 x +sec^2 x, then
f(x)<1
f(x)=1
2 < f(x)< 1
f(x)≥2
Given that, f(x)=cos2x+sec2x
We know that,AM≥GM
=cos2x+sec2x2≥√cos2xsec2x
⇒cos2x+sec2x≥2
[∵cosx.secx=1]
⇒f(x)≥2
If f(x)=cos2x+sec2x, then
If f(x) =(1+x)1x−ex then