wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

If f(x)=cos(loge x), then f(1x)f(1y)12{f(xy)+f(xy)} is equal to


A

cos(xy)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
B

log(cos(xy))

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

1

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

cos(x+y)

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

Given:
f(x)=cos(loge x)f(1x)=cos(loge(1x))f(1x=cos(loge (x)))f(1x)=cos(loge(x))
Similarly,
f(1y)=cos(loge y)
Now,
f(xy)=cos(loge xy)=cos(loge x+loge y)
and
f(xy)=cos(loge xy)=cos(loge xloge y)f(xy)+cos(xy)=cos(loge xloge y)+cos(loge x+loge y)f(xy)+f(xy)=cos(loge x)cos(loge y)12[f(xy)+f(xy)]=cos(loge x) cos(loge y)f(1x)f(1y)12{f(xy)+f(xy)}=cos(loge x)cos(loge y)cos(loge x)cos(loge y)=0


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Composite Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon