If f(x)=cos (log x), then f(x) f(y)−12{f(xy)+f(xy)} has the value
None of these
Given :
f(x)=cos(log x)
∴f(y)=cos(log y)
Now,
f(xy)=cos(log(xy))=cos(log x−log y)
and
f(xy)=cos(log xy)=cos(log x+log y)⇒f(xy)+f(xy)=cos(log x−log y)+cos(log x+log y)⇒f(xy)+f(xy)=2 cos(log x)cos(log y)⇒12[f(xy)+f(xy)]=cos(log x)cos(log y)⇒f(x) f(y)−12[f(xy)+f(xy)]
=cos(log x)cos(log y)−cos(log x)cos(log y)=0