The correct option is
A √2Given that
f(x)=cosxcos2xcos4xcos8xcos16x
Multiply & divide by 2sinx
f(x)=2sinxcosxcos2xcos4xcos8xcos16x2sinx
Since sin2x=2sinxcosx
f(x)=sin2xcos2xcos4xcos8xcos16x2sinx
Multiplying and dividing by 2, we get
f(x)=2sin2xcos2xcos4xcos8xcos16x22sinx
f(x)=sin4xcos4xcos8xcos16x22sinx
Similarly continuing upto cos16x, we get
f(x)=sin25x25sinx=sin32x32sinx
Differentiating w.r. to x
f′(x)=132[32sinxcos32x−cosxsin32x(sinx)2]
∴f′(π4)=132⎡⎢
⎢
⎢
⎢
⎢⎣32sinπ4cos8π−cosπ4sin8π(sinπ4)2⎤⎥
⎥
⎥
⎥
⎥⎦
∴f′(π4)=2√2=√2