The correct option is A [−12,1)
f(x)+g(x)=√3+4x−4x2+12−tan(πx2)
Therefore, for real values of (f+g),
3+4x−4x2≥0
4x2−4x−3≤0
4x2−6x+2x−3≤0
2x(2x−3)+(2x−3)≤0
(2x+1)(2x−3)≤0
x≥−12 and x≤3
Therefore
xϵ[−12,3] ...(i)
Also consider tan(π.x2). Since tanx is discontinuous for all xϵ(2n+1)π2) hence for tan(π.x2) the domain is R−1,3,5...(2n+1) ...(ii)
Hence from i and ii
xϵ[−12,1)∪(1,3)