The correct options are
A Df=R−{−1±√52}
C Rf=(−∞,0)∪[45,∞)
f(x)=1|x−1|−x2
The function is defined when
|x−1|−x2≠0
Now,
|x−1|=x2
Squaring on the both sides,
⇒(x−1)2=x4
⇒(x2)2−(x−1)2=0
⇒(x2+x−1)(x2−x+1)=0
x2−x+1>0 as Δ<0
∴x2+x−1=0
⇒x=−1±√52
∴Df=R−{−1±√52}
For range:
Let y=1|x−1|−x2
⇒x2−|x−1|+1y=0, y≠0
Case :1 When x≥1
⇒x2−x+(1y+1)=0
As x∈R
⇒Δ≥0
⇒1−4(1y+1)≥0
⇒−4y−3≥0
⇒4+3yy≤0, y≠0
⇒y∈[−43,0) ...(1)
Case :2 When x<1
⇒x2+x+(1y−1)=0
⇒Δ≥0
⇒1−4(1y−1)≥0
⇒−4y+5≥0
⇒5y−4y≥0, y≠0
⇒y∈(−∞,0)∪[45,∞) ...(2)
From (1) and (2)
⇒y∈(−∞,0)∪[45,∞)
∴Rf=(−∞,0)∪[45,∞)