f(x)=ax+bpx2+qx+rf′(x)=a(px2+qx+r)−(2px+q)(ax+b)(px2+qx+r)2f′(x)=apx2+aqx+ar−2apx2−2pbx−qax−bq(px2+qx+r)2f′(x)=−apx2+ar−2pbx−bq(px2+qx+r)2
If f(x)=x3+px2+qx+6, p,q,ϵR, f′(x)<0 for largest possible interval [−53,−1], then p2+q2=
Differentiate the following functions with respect to x :
px2+qx+rax+b