Differentiate the function f(x)=x100100+x9999+x9898+⋯+x+1 with respect to x.
f′(x)=x99+x98+x97+⋯+1
f′(0)=(0)99+(0)98+(0)97+⋯+1
=1
f′(1)=(1)99+(1)98+(1)97+⋯+1
=1+1+⋯(100times)
=100
f′(1)=100×1
=100f′(0)
Hence proved.
If f(x)=x100100+x9999+x9898+⋯+x22+x+1, then f′(1)=