The correct options are
A limx→1f(x) exists ⇒a=−2
B limx→−2f(x) exists ⇒a=13
C limx→1f(x)=43
D limx→−2f(x)=−13
f(x)=3x2+ax+a+1(x+2)(x−1)
As x→1, Denominator →0. Hence as x→1, Numerator →0.
Therefore, 3+2a+1=0 or a=−2
As x→−2,Denominator →0.Hence as x→−2, Numerator →0.
Therefore, 12−2a+a+1=0 or a=13
Now, limx→1f(x)=limx→13x2−2x−1(x+2)(x−1)
=limx→1(3x+1)(x−1)(x+2)(x−1)=43
Now,limx→−23x2+13x+14(x+2)(x−1)
=limx→−2(3x+7)(x+2)(x+2)(x−1)=−13