If f"(x)=−f(x) and g(x)=f′(x) and F(x)=(f(x2))2+(g(x2))2 and given that F(5)=5, then F(10) is equal to
asf′′(x)=−f(x)∴f(x)=Ksinxandg(x)=f′(x)=+KcosxnowF(5)=5[Kisn(52)]2+[Kcos(52)]2=5K2=5thenF(10)=(Ksin5)2+(Kcos5)2=K2=5