If f(x)=sin4 x+cos2 xsin2 x+cos4 x for xϵR, then f(2002).
1
Given:
f(x)=sin4 x+cos2 xsin2 x+cos4 x
On dividing the numerator and denominator by cos4 x, we get
f(x)=tan4 x+sec2 x1+tan2 x sec2 x=1+tan4 x+tan2 x1+tan2 x(1+tan2 x)=1+tan4 x+tan2 x1+tan4 x+tan2 x=1 For everyxϵR
For x = 2002, we have
f(2002) = 1