If f(x)=x−1x+1, then show that (i) f(1x)=−f(x) (ii) f(−1x)=−1f(x)
We have, f(x)=x−1x+1
(i) f(1x)=1x−11x+1=(1−x)x(1+x)x=1−x1+x =−(x−1)x+1=−f(x)
(ii) f(−1x)=−1x−1−1x+1=−1−xx(−1+x)x ⇒f(−1x)=−(x+1)x−1 Now, −1f(x)=−1x−1x+1=−(x+1)x−1 ∴f(−1x)=−1f(x)
If f(x)=x+1x−1, show that f[f(x)]=x.