If f(x)=kx-sinxin monotonically increasing, then
k>1
k>-1
k<1
k<–1
Explanation for correct option:
Find the relation:
Given,
f(x)=kx–sinx
Differentiated the given function with respect to x,
f’(x)=k–cosx[∵ddxsinx=cosx]
Since, the function is monotonically increasing,
f'(x)>0⇒k–cosx>0
At x=0, we get
k>cos0⇒k>1∵cosx∈[-1,1]
Hence, the correct option is A.
If f(x)=kx-cosx is monotonically increasing for all x∈R, then