f(x)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩−x−1,x<−11+x−1≤x<01−x,0≤x≤1x−1x>1
;
f(x−1)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩−x,x−1<−1⇒x<0x,−1≤x−1<0⇒0≤x<12−x,0≤x−1≤1⇒1≤x≤2x−2x−1>1⇒x>2
Similarly,
f(x+1)=⎧⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪⎩−x−2,x+1<1−1⇒x<−2x+2−1≤x+1<0⇒−2≤x<−1−x,0≤x+1≤1⇒−1≤x≤0 x−1x+1>1⇒x>0
⇒g(x)=f(x−1)+f(x+1)=⎧⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎨⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪⎩−2x−2x<−2, 2,−2≤x<−1−2x−1≤x≤0 2x0<x<121<x≤22x−2,2<x
clearly g(x) is even,
Now 5∫−3g(x)dx=2∫30g(x)dx+5∫3g(x)dx=2⎛⎜⎝1∫02xdx+2∫12dx+3∫2(2x−2)dx⎞⎟⎠+5∫3(2x−2)dx=2(1+2+3)+12=24