If f(x)={2x+3,x≤03(x+1),x>0 Find limx→0f(x) and limx→1f(x).
f(x)={2x+3,x≤03(x+1),x>0
LHL:
limx→0f(x)=limx→(2x+3)
Let x =0 -h, h =-x
as x→0−⇒x<0 (slightly)
⇒h>0⇒h⇒0+
limx→0+[2(0−h)+3]
=limx→0+[−2h+3]=3
RHL:
LHL:
limx→0f(x)=limx→(2x+3)
Let x =0 -h, h =-x
as x→0−⇒x<0 (slightly)
⇒h>0⇒h⇒0+
limx→0+[2(0−h)+3]
=limx→0+[−2h+3]=3
RHL:
limx→0+f(x)
limx→0+3(x+1)
Let x=0+h,⇒h=x
as x→0+ (slightly)
⇒h>0⇒h→0+
limx→0+(3h+3)=2
∴LHL=RHL
limx→1+f(x)
=limx→1+3(x+1)
Let x =1+h, where h→0+
limx→03(1+h+1)=6
∴LHL=RHL
limx→1f(x)=6